AiController.py 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472
  1. import base64
  2. import json
  3. import logging
  4. import os
  5. import threading
  6. import time
  7. import apns2
  8. import boto3
  9. import jpush
  10. from boto3.session import Session
  11. from django.views.generic.base import View
  12. from pyfcm import FCMNotification
  13. from AnsjerPush.config import SERVER_TYPE, AI_IDENTIFICATION_TAGS_DICT
  14. from AnsjerPush.config import AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, APNS_MODE, APNS_CONFIG, BASE_DIR, \
  15. JPUSH_CONFIG, FCM_CONFIG
  16. from Model.models import UidPushModel, AiService
  17. from Object.ETkObject import ETkObject
  18. from Object.MergePic import ImageProcessing
  19. from Object.ResponseObject import ResponseObject
  20. from Object.utils import LocalDateTimeUtil
  21. from Service.CommonService import CommonService
  22. from Service.EquipmentInfoService import EquipmentInfoService
  23. class AiView(View):
  24. def get(self, request, *args, **kwargs):
  25. request.encoding = 'utf-8'
  26. operation = kwargs.get('operation')
  27. return self.validation(request.GET, operation)
  28. def post(self, request, *args, **kwargs):
  29. request.encoding = 'utf-8'
  30. operation = kwargs.get('operation')
  31. return self.validation(request.POST, operation)
  32. def validation(self, request_dict, operation):
  33. response = ResponseObject()
  34. if operation == 'identification': # ai识别推送
  35. return self.identification(request_dict, response)
  36. else:
  37. return response.json(414)
  38. def identification(self, request_dict, response):
  39. """
  40. ai识别推送
  41. @param request_dict: 请求数据
  42. @request_dict etk: uid token
  43. @request_dict n_time: 设备的当前时间
  44. @request_dict channel: 通道
  45. @request_dict fileOne: 图片一
  46. @request_dict fileTwo: 图片二
  47. @request_dict fileThree: 图片三
  48. @param response: 响应
  49. @return: response
  50. """
  51. etk = request_dict.get('etk', None)
  52. n_time = request_dict.get('n_time', None)
  53. channel = request_dict.get('channel', '1')
  54. file_one = request_dict.get('fileOne', None)
  55. file_two = request_dict.get('fileTwo', None)
  56. file_three = request_dict.get('fileThree', None)
  57. if not all([etk, n_time]):
  58. return response.json(444)
  59. # 解密etk并判断uid长度
  60. eto = ETkObject(etk)
  61. uid = eto.uid
  62. logger = logging.getLogger('info')
  63. logger.info('---进入ai识别推送接口--- etk:{}, uid:{}'.format(etk, uid))
  64. receive_time = int(time.time())
  65. file_list = [file_one, file_two, file_three]
  66. # 查询设备是否有使用中的ai服务
  67. ai_service_qs = AiService.objects.filter(uid=uid, detect_status=1, use_status=1, endTime__gt=receive_time). \
  68. values('detect_group')
  69. if not ai_service_qs.exists():
  70. return response.json(173)
  71. detect_group = ai_service_qs[0]['detect_group']
  72. try:
  73. dir_path = os.path.join(BASE_DIR, 'static/ai/' + uid + '/' + str(n_time))
  74. if not os.path.exists(dir_path):
  75. os.makedirs(dir_path)
  76. file_path_list = []
  77. for i, val in enumerate(file_list):
  78. val = val.replace(' ', '+')
  79. val = base64.b64decode(val)
  80. file_path = "{dir_path}/{n_time}_{i}.jpg".format(dir_path=dir_path, n_time=n_time, i=i)
  81. file_path_list.append(file_path)
  82. with open(file_path, 'wb') as f:
  83. f.write(val)
  84. f.close()
  85. image_size = 0 # 每张小图片的大小,等于0是按原图大小进行合并
  86. image_row = 1 # 合并成一张图后,一行有几个小图
  87. ImageProcessingObj = ImageProcessing(dir_path, image_size, image_row)
  88. image_info_dict = ImageProcessing.merge_images(ImageProcessingObj)
  89. photo = open(dir_path + '.jpg', 'rb') # 打开合成图
  90. # 识别合成图片
  91. maxLabels = 50 # 最大标签
  92. minConfidence = 80 # 置信度
  93. client = boto3.client(
  94. 'rekognition',
  95. aws_access_key_id='AKIA2E67UIMD6JD6TN3J',
  96. aws_secret_access_key='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',
  97. region_name='us-east-1')
  98. # doc:
  99. rekognition_res = client.detect_labels(
  100. Image={'Bytes': photo.read()},
  101. MaxLabels=maxLabels,
  102. MinConfidence=minConfidence)
  103. photo.close()
  104. if rekognition_res['ResponseMetadata']['HTTPStatusCode'] != 200:
  105. return response.json(173)
  106. # rekognition_res = '{"Labels":[{"Name":"Person","Confidence":99.55254364013672,"Instances":[{"BoundingBox":{"Width":0.07776174694299698,"Height":0.13592061400413513,"Left":0.38370513916015625,"Top":0.09075711667537689},"Confidence":99.55254364013672},{"BoundingBox":{"Width":0.10947742313146591,"Height":0.12066027522087097,"Left":0.2790755331516266,"Top":0.10242735594511032},"Confidence":99.54237365722656},{"BoundingBox":{"Width":0.2935298979282379,"Height":0.09244367480278015,"Left":0.6143953204154968,"Top":0.9052517414093018},"Confidence":98.82627868652344},{"BoundingBox":{"Width":0.35492533445358276,"Height":0.21574528515338898,"Left":0.3411630690097809,"Top":0.27151572704315186},"Confidence":96.74708557128906},{"BoundingBox":{"Width":0.39604419469833374,"Height":0.09648437798023224,"Left":0.060247838497161865,"Top":0.9000436663627625},"Confidence":95.03588104248047},{"BoundingBox":{"Width":0.1105344295501709,"Height":0.1257047802209854,"Left":0.0025259912945330143,"Top":0.8314586877822876},"Confidence":92.17312622070312},{"BoundingBox":{"Width":0.13166509568691254,"Height":0.12054375559091568,"Left":0.10105808824300766,"Top":0.8364697694778442},"Confidence":89.71287536621094},{"BoundingBox":{"Width":0.22752150893211365,"Height":0.09563954919576645,"Left":0.7430258989334106,"Top":0.8961490392684937},"Confidence":85.34542083740234},{"BoundingBox":{"Width":0.1297324150800705,"Height":0.096779465675354,"Left":0.4607183039188385,"Top":0.9025260806083679},"Confidence":83.4525375366211}],"Parents":[]},{"Name":"Human","Confidence":99.55254364013672,"Instances":[],"Parents":[]},{"Name":"Husky","Confidence":98.64888763427734,"Instances":[],"Parents":[{"Name":"Dog"},{"Name":"Pet"},{"Name":"Canine"},{"Name":"Animal"},{"Name":"Mammal"}]},{"Name":"Dog","Confidence":98.64888763427734,"Instances":[{"BoundingBox":{"Width":0.2157023847103119,"Height":0.2352331429719925,"Left":0.26413947343826294,"Top":0.5162186622619629},"Confidence":94.06558990478516},{"BoundingBox":{"Width":0.23323440551757812,"Height":0.2026243358850479,"Left":0.4748744070529938,"Top":0.5457579493522644},"Confidence":92.4560546875},{"BoundingBox":{"Width":0.31273096799850464,"Height":0.23413777351379395,"Left":0.6696768999099731,"Top":0.5142407417297363},"Confidence":91.39192199707031},{"BoundingBox":{"Width":0.27037277817726135,"Height":0.21958686411380768,"Left":0.053227268159389496,"Top":0.5305629968643188},"Confidence":90.0697250366211}],"Parents":[{"Name":"Pet"},{"Name":"Canine"},{"Name":"Animal"},{"Name":"Mammal"}]},{"Name":"Canine","Confidence":98.64888763427734,"Instances":[],"Parents":[{"Name":"Mammal"},{"Name":"Animal"}]},{"Name":"Pet","Confidence":98.64888763427734,"Instances":[],"Parents":[{"Name":"Animal"}]},{"Name":"Mammal","Confidence":98.64888763427734,"Instances":[],"Parents":[{"Name":"Animal"}]},{"Name":"Animal","Confidence":98.64888763427734,"Instances":[],"Parents":[]},{"Name":"Car","Confidence":96.32373809814453,"Instances":[{"BoundingBox":{"Width":0.5476366281509399,"Height":0.10842914879322052,"Left":0.38325461745262146,"Top":0.11447073519229889},"Confidence":96.32373809814453}],"Parents":[{"Name":"Vehicle"},{"Name":"Transportation"}]},{"Name":"Transportation","Confidence":96.32373809814453,"Instances":[],"Parents":[]},{"Name":"Vehicle","Confidence":96.32373809814453,"Instances":[],"Parents":[{"Name":"Transportation"}]},{"Name":"Automobile","Confidence":96.32373809814453,"Instances":[],"Parents":[{"Name":"Vehicle"},{"Name":"Transportation"}]},{"Name":"Clothing","Confidence":86.02703857421875,"Instances":[],"Parents":[]},{"Name":"Apparel","Confidence":86.02703857421875,"Instances":[],"Parents":[]},{"Name":"Puppy","Confidence":85.16007232666016,"Instances":[],"Parents":[{"Name":"Dog"},{"Name":"Pet"},{"Name":"Canine"},{"Name":"Animal"},{"Name":"Mammal"}]},{"Name":"Wheel","Confidence":74.5079116821289,"Instances":[{"BoundingBox":{"Width":0.0818198174238205,"Height":0.052956655621528625,"Left":0.4488227367401123,"Top":0.17395207285881042},"Confidence":74.5079116821289},{"BoundingBox":{"Width":0.09288611263036728,"Height":0.050751496106386185,"Left":0.7844013571739197,"Top":0.17587198317050934},"Confidence":51.4537353515625}],"Parents":[{"Name":"Machine"}]},{"Name":"Machine","Confidence":74.5079116821289,"Instances":[],"Parents":[]}],"LabelModelVersion":"2.0","ResponseMetadata":{"RequestId":"1088325e-996b-4982-9afb-bd95df6d6fb3","HTTPStatusCode":200,"HTTPHeaders":{"x-amzn-requestid":"1088325e-996b-4982-9afb-bd95df6d6fb3","content-type":"application/x-amz-json-1.1","content-length":"4291","date":"Tue, 15 Mar 2022 06:44:17 GMT"},"RetryAttempts":0}}'
  107. # rekognition_res = json.loads(rekognition_res)
  108. labels = self.labelsCoords(detect_group, rekognition_res, image_info_dict) # 检查标签是否符合用户选择的识别类型
  109. logger.info('-----记录返回labels')
  110. logger.info('labels')
  111. # return response.json(0,labels)
  112. if len(labels['label_list']) == 0:
  113. # 需要删除图片
  114. # photo.close()
  115. # self.del_path(os.path.join(BASE_DIR, 'static/ai/' + uid))
  116. logger.info('没有识别到任何标签-----------------')
  117. return response.json(10055)
  118. eventType = labels['eventType']
  119. label_str = ','.join(labels['label_list'])
  120. new_bounding_box_dict = labels['new_bounding_box_dict']
  121. logger.info(eventType)
  122. logger.info(label_str)
  123. # 上传缩略图到s3
  124. file_dict = {}
  125. for i, val in enumerate(file_path_list):
  126. file_dict[val] = "{uid}/{channel}/{n_time}_{i}.jpeg".format(uid=uid, channel=channel, # 封面图
  127. n_time=n_time, i=i)
  128. thread_task = threading.Thread(target=self.upload_s3, args=(file_dict, dir_path))
  129. thread_task.start()
  130. # time.sleep(10)
  131. # 存储消息以及推送
  132. is_st = 3 # 多图
  133. # 查询推送数据
  134. uid_push_qs = UidPushModel.objects.filter(uid_set__uid=uid). \
  135. values('token_val', 'app_type', 'appBundleId', 'm_code', 'push_type', 'userID_id',
  136. 'userID__NickName',
  137. 'lang', 'm_code', 'tz', 'uid_set__nickname', 'uid_set__detect_interval',
  138. 'uid_set__detect_group',
  139. 'uid_set__channel')
  140. if not uid_push_qs.exists():
  141. return response.json(173)
  142. uid_push_list = []
  143. for qs in uid_push_qs:
  144. uid_push_list.append(qs)
  145. nickname = uid_push_list[0]['uid_set__nickname']
  146. if not nickname:
  147. nickname = uid
  148. eq_list = []
  149. userID_ids = []
  150. local_date_time = ''
  151. for up in uid_push_list:
  152. push_type = up['push_type']
  153. appBundleId = up['appBundleId']
  154. token_val = up['token_val']
  155. lang = up['lang']
  156. tz = up['tz']
  157. if tz is None or tz == '':
  158. tz = 0
  159. local_date_time = CommonService.get_now_time_str(n_time=n_time, tz=tz, lang='cn')
  160. logger.info('----AI消息存库{},{},{}'.format(uid, local_date_time, tz))
  161. local_date_time = local_date_time[0:10]
  162. # 以下是存库
  163. userID_id = up["userID_id"]
  164. if userID_id not in userID_ids:
  165. now_time = int(time.time())
  166. eq_list.append(EquipmentInfoService.get_equipment_info_obj(
  167. local_date_time,
  168. device_user_id=userID_id,
  169. event_time=n_time,
  170. event_type=eventType,
  171. device_uid=uid,
  172. device_nick_name=nickname,
  173. channel=channel,
  174. alarm='检查到{labels} \tChannel:{channel}'.format(labels=label_str, channel=channel),
  175. is_st=is_st,
  176. receive_time=receive_time,
  177. add_time=now_time,
  178. storage_location=2,
  179. border_coords=json.dumps(new_bounding_box_dict)
  180. ))
  181. userID_ids.append(userID_id)
  182. # 推送标题
  183. msg_title = self.get_msg_title(appBundleId=appBundleId, nickname=nickname)
  184. # 推送内容
  185. msg_text = self.get_msg_text(channel=channel, n_time=n_time, lang=lang, tz=tz, label_list=label_str)
  186. kwargs = {
  187. 'uid': uid,
  188. 'channel': channel,
  189. 'event_type': eventType,
  190. 'n_time': n_time,
  191. 'appBundleId': appBundleId,
  192. 'token_val': token_val,
  193. 'msg_title': msg_title,
  194. 'msg_text': msg_text,
  195. }
  196. try:
  197. # 推送消息
  198. if push_type == 0: # ios apns
  199. self.do_apns(**kwargs)
  200. elif push_type == 1: # android gcm
  201. self.do_fcm(**kwargs)
  202. elif push_type == 2: # android jpush
  203. self.do_jpush(**kwargs)
  204. except Exception as e:
  205. logger.info(
  206. "errLine={errLine}, errMsg={errMsg}".format(errLine=e.__traceback__.tb_lineno, errMsg=repr(e)))
  207. continue
  208. # 分表批量存储
  209. if eq_list and len(eq_list) > 0:
  210. logger.info("AI存库中........")
  211. week = LocalDateTimeUtil.date_to_week(local_date_time)
  212. result = EquipmentInfoService.equipment_info_bulk_create(week, eq_list)
  213. logger.info("-.-存库结果{}".format(result))
  214. return response.json(0)
  215. except Exception as e:
  216. print(e)
  217. data = {
  218. 'errLine': e.__traceback__.tb_lineno,
  219. 'errMsg': repr(e)
  220. }
  221. return response.json(48, data)
  222. def del_path(self, path):
  223. if not os.path.exists(path):
  224. return
  225. if os.path.isfile(path):
  226. os.remove(path)
  227. else:
  228. items = os.listdir(path)
  229. for f in items:
  230. c_path = os.path.join(path, f)
  231. if os.path.isdir(c_path):
  232. self.del_path(c_path)
  233. else:
  234. os.remove(c_path)
  235. os.rmdir(path)
  236. ## 检查是否有符合条件的标签,并且返回标签坐标位置信息
  237. def labelsCoords(self, user_detect_group, rekognition_res, image_info_dict):
  238. logger = logging.getLogger('info')
  239. labels = rekognition_res['Labels']
  240. label_name = []
  241. label_list = []
  242. logger.info('--------识别到的标签-------')
  243. logger.info(labels)
  244. all_labels_type = {
  245. '1': ['Person', 'Human'], # 人
  246. '2': ['Pet', 'Dog', 'Canine', 'Animal', 'Puppy', 'Cat'], # 动物
  247. '3': ['Vehicle', 'Car', 'Transportation', 'Automobile', 'Bus'], # 车
  248. '4': ['Package', 'Carton', 'Cardboard', 'Package Delivery'] # 包裹
  249. }
  250. # 找出识别的所有标签
  251. for label in labels:
  252. label_name.append(label['Name'])
  253. for Parents in label['Parents']:
  254. label_name.append(Parents['Name'])
  255. logger.info('标签名------')
  256. logger.info(label_name)
  257. # 删除用户没有选择的ai识别类型, 并且得出最终识别结果
  258. user_detect_list = user_detect_group.split(',')
  259. user_detect_list = [i.strip() for i in user_detect_list]
  260. conform_label_list = []
  261. conform_user_d_group = set()
  262. for key, label_type_val in all_labels_type.items():
  263. if key in user_detect_list:
  264. for label in label_type_val:
  265. if label in label_name:
  266. conform_user_d_group.add(key)
  267. conform_label_list.append(label)
  268. # 找出标签边框线位置信息
  269. boundingBoxList = []
  270. for label in labels:
  271. if label['Name'] in conform_label_list:
  272. for boundingBox in label['Instances']:
  273. boundingBoxList.append(boundingBox['BoundingBox'])
  274. # 找出边框位置信息对应的单图位置并重新计算位置比
  275. merge_image_height = image_info_dict['height']
  276. single_height = merge_image_height // image_info_dict['num']
  277. new_bounding_box_dict = {}
  278. new_bounding_box_dict['file_0'] = []
  279. new_bounding_box_dict['file_1'] = []
  280. new_bounding_box_dict['file_2'] = []
  281. # new_bounding_box_dict['file_3'] = []
  282. for k, val in enumerate(boundingBoxList):
  283. boundingBoxTop = merge_image_height * val['Top']
  284. # 找出当前边框属于哪张图片范围
  285. boxDict = {}
  286. for i in range(image_info_dict['num']):
  287. min = i * single_height # 第n张图
  288. max = (i + 1) * single_height
  289. if boundingBoxTop >= min and boundingBoxTop <= max:
  290. # print("属于第{i}张图".format(i=i+1))
  291. boxDict['Width'] = val['Width']
  292. boxDict['Height'] = merge_image_height * val['Height'] / single_height
  293. boxDict['Top'] = ((merge_image_height * val['Top']) - (
  294. i * single_height)) / single_height # 减去前i张图片的高度
  295. boxDict['Left'] = val['Left']
  296. new_bounding_box_dict["file_{i}".format(i=i)].append(boxDict)
  297. # exit(new_bounding_box_list)
  298. conform_user_d_group = list(conform_user_d_group)
  299. if len(conform_user_d_group) > 1:
  300. conform_user_d_group.sort()
  301. # 集成识别标签
  302. for label_key in conform_user_d_group:
  303. label_list.append(AI_IDENTIFICATION_TAGS_DICT[label_key])
  304. eventType = ''.join(conform_user_d_group) # 组合类型
  305. else:
  306. label_list.append(AI_IDENTIFICATION_TAGS_DICT[conform_user_d_group[0]])
  307. eventType = conform_user_d_group[0]
  308. logger.info('------conform_user_d_group------ {}'.format(conform_user_d_group))
  309. logger.info('------label_list------ {}'.format(label_list))
  310. return {'eventType': eventType, 'label_list': label_list,
  311. 'new_bounding_box_dict': new_bounding_box_dict}
  312. def upload_s3(self, file_dict, dir_path):
  313. try:
  314. if SERVER_TYPE == "Ansjer.formal_settings":
  315. #存国外
  316. aws_key = AWS_ACCESS_KEY_ID[1]
  317. aws_secret = AWS_SECRET_ACCESS_KEY[1]
  318. session = Session(aws_access_key_id=aws_key,
  319. aws_secret_access_key=aws_secret,
  320. region_name="us-east-1")
  321. s3 = session.resource("s3")
  322. bucket = "foreignpush"
  323. else:
  324. #存国内
  325. aws_key = AWS_ACCESS_KEY_ID[0]
  326. aws_secret = AWS_SECRET_ACCESS_KEY[0]
  327. session = Session(aws_access_key_id=aws_key,
  328. aws_secret_access_key=aws_secret,
  329. region_name="cn-northwest-1")
  330. s3 = session.resource("s3")
  331. bucket = "push"
  332. for file_path, upload_path in file_dict.items():
  333. print('-------')
  334. print(file_path)
  335. print('-------')
  336. upload_data = open(file_path, "rb")
  337. # upload_key = "test"
  338. s3.Bucket(bucket).put_object(Key=upload_path, Body=upload_data)
  339. # 需要删除图片
  340. self.del_path(dir_path)
  341. self.del_path(dir_path + '.jpg')
  342. return True
  343. except Exception as e:
  344. print(repr(e))
  345. return False
  346. def get_msg_title(self, appBundleId, nickname):
  347. package_title_config = {
  348. 'com.ansjer.customizedd_a': 'DVS',
  349. 'com.ansjer.zccloud_a': 'ZosiSmart',
  350. 'com.ansjer.zccloud_ab': '周视',
  351. 'com.ansjer.adcloud_a': 'ADCloud',
  352. 'com.ansjer.adcloud_ab': 'ADCloud',
  353. 'com.ansjer.accloud_a': 'ACCloud',
  354. 'com.ansjer.loocamccloud_a': 'Loocam',
  355. 'com.ansjer.loocamdcloud_a': 'Anlapus',
  356. 'com.ansjer.customizedb_a': 'COCOONHD',
  357. 'com.ansjer.customizeda_a': 'Guardian365',
  358. 'com.ansjer.customizedc_a': 'PatrolSecure',
  359. }
  360. if appBundleId in package_title_config.keys():
  361. return package_title_config[appBundleId] + '(' + nickname + ')'
  362. else:
  363. return nickname
  364. def get_msg_text(self, channel, n_time, lang, tz, label_list):
  365. n_date = CommonService.get_now_time_str(n_time=n_time, tz=tz, lang=lang)
  366. if lang == 'cn':
  367. msg = '摄像头AI识别到了{}'.format(label_list)
  368. send_text = '{msg} 通道:{channel} 日期:{date}'.format(msg=msg, channel=channel, date=n_date)
  369. else:
  370. msg = 'Camera AI recognizes {}'.format(label_list)
  371. send_text = '{msg} channel:{channel} date:{date}'.format(msg=msg, channel=channel, date=n_date)
  372. return send_text
  373. def do_jpush(self, uid, channel, appBundleId, token_val, event_type, n_time, msg_title, msg_text):
  374. app_key = JPUSH_CONFIG[appBundleId]['Key']
  375. master_secret = JPUSH_CONFIG[appBundleId]['Secret']
  376. # 此处换成各自的app_key和master_secre
  377. _jpush = jpush.JPush(app_key, master_secret)
  378. push = _jpush.create_push()
  379. push.audience = jpush.registration_id(token_val)
  380. push_data = {"alert": "Motion ", "event_time": n_time, "event_type": event_type, "msg": "",
  381. "received_at": n_time, "sound": "sound.aif", "uid": uid, "zpush": "1", "channel": channel}
  382. android = jpush.android(alert=msg_text, priority=1, style=1, alert_type=7,
  383. big_text=msg_text, title=msg_title,
  384. extras=push_data)
  385. push.notification = jpush.notification(android=android)
  386. push.platform = jpush.all_
  387. res = push.send()
  388. print(res)
  389. return res.status_code
  390. def do_fcm(self, uid, channel, appBundleId, token_val, event_type, n_time, msg_title, msg_text):
  391. try:
  392. serverKey = FCM_CONFIG[appBundleId]
  393. push_service = FCMNotification(api_key=serverKey)
  394. data = {"alert": "Motion ", "event_time": n_time, "event_type": event_type, "msg": "",
  395. "received_at": n_time, "sound": "sound.aif", "uid": uid, "zpush": "1", "channel": channel}
  396. result = push_service.notify_single_device(registration_id=token_val, message_title=msg_title,
  397. message_body=msg_text, data_message=data,
  398. extra_kwargs={
  399. 'default_vibrate_timings': True,
  400. 'default_sound': True,
  401. 'default_light_settings': True
  402. })
  403. print('fcm push ing')
  404. print(result)
  405. return result
  406. except Exception as e:
  407. return 'serverKey abnormal'
  408. def do_apns(self, uid, channel, appBundleId, token_val, event_type, n_time, msg_title, msg_text):
  409. logger = logging.getLogger('info')
  410. logger.info("进来do_apns函数了")
  411. logger.info(token_val)
  412. logger.info(APNS_MODE)
  413. logger.info(os.path.join(BASE_DIR, APNS_CONFIG[appBundleId]['pem_path']))
  414. try:
  415. cli = apns2.APNSClient(mode=APNS_MODE,
  416. client_cert=os.path.join(BASE_DIR, APNS_CONFIG[appBundleId]['pem_path']))
  417. push_data = {"alert": "Motion ", "event_time": n_time, "event_type": event_type, "msg": "",
  418. "received_at": n_time, "sound": "", "uid": uid, "zpush": "1", "channel": channel}
  419. alert = apns2.PayloadAlert(body=msg_text, title=msg_title)
  420. payload = apns2.Payload(alert=alert, custom=push_data, sound="default")
  421. n = apns2.Notification(payload=payload, priority=apns2.PRIORITY_LOW)
  422. res = cli.push(n=n, device_token=token_val, topic=appBundleId)
  423. if res.status_code == 200:
  424. return res.status_code
  425. else:
  426. logger.info('apns push fail')
  427. logger.info(res.reason)
  428. return res.status_code
  429. except (ValueError, ArithmeticError):
  430. return 'The program has a numeric format exception, one of the arithmetic exceptions'
  431. except Exception as e:
  432. print(repr(e))
  433. logger.info(repr(e))
  434. return repr(e)